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Abstract

Objective. Physical exercise can provide many health benefits in humans. Exercise-induced reactive oxygen species 
(ROS) formation and its downstream signaling cascades are reported to induce mitochondrial biogenesis in exercising 
tissues. Selenoprotein P (SELENOP) is the antioxidant hepatokine whose hypersecretion is associated with various 
metabolic diseases. It was reported to impair exercise-induced reactive oxygen species signaling and inhibit subsequent 
mitochondrial biogenesis in mice. However, the relationship between selenoprotein P and mitochondrial dynamics in 
humans has not yet been reported. While reduction of plasma selenoprotein P becomes an attractive therapeutic target 
for metabolic diseases, the role of regular exercise in this regard is still unknown. This study aimed to analyze the 
influence of regular habitual exercise on plasma selenoprotein P levels and its association with leucocyte mitochondrial 
DNA copy number in healthy young adults. 

Methodology. Plasma selenoprotein P levels and leucocyte mitochondrial DNA copy numbers were compared in 44 
regularly exercising subjects and 44 non-exercising controls, and the correlation between the two parameters was 
analyzed. Plasma selenoprotein P levels were measured by Enzyme-linked Immunosorbent Assay, and leucocyte 
mitochondrial DNA copy numbers were measured using the qPCR method. 

Results. The regular-exercise group had lower plasma selenoprotein P levels with higher leucocyte mitochondrial DNA 
copy numbers than the non-exercise group. There was a tendency of negative correlation between the two variables in 
our studied population. 

Conclusion. Regular habitual exercise has a beneficial effect on reducing plasma selenoprotein P levels while raising 
mitochondrial DNA copy numbers.
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INTRODUCTION 

It is undisputedly accepted that physical exercise can pro-
vide many health benefits in humans beyond body fitness.1,2 
During physical exercise, numerous metabolic adaptations 
in various tissues occur to meet the increased oxidative 
capacity and metabolic demands of the exercising tissues.3-5 
One major event during physical exercise is the transient 
induction of sub-pathological amounts of reactive oxygen 
species (ROS),6 mainly generated from the mitochondrial 
respiratory chain as a byproduct of accelerated cellular 
respiration during physical exercise.7 Researchers are 
gradually realizing that exercise-induced ROS plays a 
crucial role in proper cellular functioning by acting as 
intracellular messengers in various signaling cascades.8,9 

Previous studies reported that the production of ROS 
in skeletal muscle during prolonged endurance exercise 

plays an important role in hormesis-like adaptive changes 
in skeletal muscle. In particular, acute exposure to ROS 
during physical exercise can activate the 5' adenosine mono-
phosphate-activated protein kinase - peroxisome proliferator-
activated receptor gamma (AMPK-PGC-1α) signaling 
cascade,9,10 which plays a central role in mitochondrial 
biogenesis and mitochondrial DNA maintenance.11,12 
Furthermore, exercise-induced ROS signaling induces the 
expression of endogenous antioxidant enzymes including 
manganese superoxide dismutase (MnSOD) and glutathione 
peroxidase (GPx) through the activation of nuclear factor 
erythroid 2-related factor 2 (Nrf2), to restore cellular redox 
homeostasis.13 Those adaptive changes are important for 
the health-promoting effects of regular exercise, supporting 
the fact that exercise is an antioxidant and medicine. 

Selenoprotein P (SELENOP), encoded by the SELENOP 
gene in humans, is a selenium transport protein mainly 
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and 44 male students from the Institute of Sports and 
Physical Education (ISPE), Yangon, Myanmar. 

Sample size was calculated based on the previous study 
that measured serum selenium levels in non-exercising 
and regularly-exercising groups,21 as serum selenium 
levels were reported to have a strong and significant 
correlation with circulating SELENOP levels.22,23 With 
95% confidence interval and 90% power of the study, the 
calculated required sample size for each group was 44 and 
the total sample size was 88.

We defined a regularly-exercising person as one who does 
moderate intensity endurance and/or resistance exercises 
for a minimum of 300 minutes per week for more than 6 
months.24,25 Forty-four healthy subjects from ISPE, Yangon, 
Myanmar who met the criteria participated in the regular-
exercise group. In contrast, the non-exercise control group 
comprised volunteer medical students from UM2, Yangon, 
Myanmar with no history of regular exercise within one 
year before the study. All the participants were non-obese, 
non-diabetic, normotensive, apparently healthy young 
males between the ages of 16 to 20 years. Individuals 
with a previous history of diabetes, hypertension, liver 
diseases or currently taking selenium or antioxidant 
vitamin supplementation were excluded from the study. 
Our study was approved by the Institutional Review 
Board, Department of Medical Research Myanmar 
(Ethics/DMR/2020/026). All participants were volunteers 
who provided written informed consent for participation. 

Physical examination and blood sample collection 

Personal data collection, history taking, anthropometric 
assessment and blood pressure measurement were 
performed before taking the fasting blood sample. Venous 
blood samples were put in EDTA tubes and centrifuged 
at 2500×g for 10 minutes for buffy coat and plasma 
separation. According to the manufacturer's instructions, 
genomic DNA isolation was performed from the buffy 
coat samples on the same day of sample collection using 
the blood DNA mini kit (Invitrogen, USA). During 
DNA extraction, the lysate of the buffy coat layer was 
treated with RNAase solution to eliminate possible RNA 
contamination in the purified DNA samples. 

Measurement of plasma SELENOP levels 

The SELENOP levels of the plasma samples were measured 
via the Enzyme-linked Immunosorbent Assay (ELISA) 
method by using the Human selenoprotein P (SELENOP) 
ELISA kit (Catalogue No: abx251264, Abbexa, UK) accor-
ding to the manufacturer's instructions. 

Measurement of leucocyte mitochondrial DNA copy 
number 

DNA concentration of each sample was measured and 
diluted by nuclease-free water to prepare a 10ng/µl con-

secreted by the liver.14 It is reported to have an antioxidant 
capacity through direct enzymatic action or by supplying 
selenium to synthesize intracellular antioxidant enzymes.15 
Notably, one recent report indicated that SELENOP 
deficiency in mice increased exercise-induced ROS 
formation and subsequent AMPK signaling cascade with 
higher mitochondrial DNA content in skeletal muscle.16 In 
their study, they also reported over-activity of SELENOP 
impaired hydrogen peroxide (H2O2) -induced AMPK 
phosphorylation and mitochondrial biogenesis in the 
myocyte, indicating the inhibitory action of SELENOP 
on mitochondrial biogenesis.16 However, the relationship 
between SELENOP and mitochondrial dynamic in human 
studies has not been reported.

Previously, hepatic overproduction of SELENOP 
was reported to be involved in insulin resistance and 
hyperglycemia in patients with type 2 diabetes,17 
hypoadiponectinemia18 and impaired angiogenesis by 
vascular endothelial growth factor (VEGF) resistance.19 
Misu et al., reported that overproduction of SELENOP 
impairs insulin signaling and dysregulates cellular 
glucose metabolism by reducing insulin-stimulated 
insulin receptor phosphorylation and subsequent Akt 
phosphorylation in hepatocytes and glucose uptake into 
myocytes.19 Since the reduction of plasma SELENOP has 
been considered the potential target for the prevention and 
treatment of metabolic diseases, exploring various factors 
which influence plasma SELENOP levels has interested 
many researchers. One potential candidate is regular 
exercise, which has been reported to have beneficial effects 
in preventing various metabolic diseases.1 To our best 
knowledge, there have been no previous reports about the 
influence of regular exercise on plasma SELENOP levels 
in the healthy young population. 

Therefore, the general objective of this study was to analyze 
the influence of regular exercise on plasma SELENOP 
levels and determine whether there is a correlation between 
plasma SELENOP levels and leucocyte mitochondrial 
DNA copy numbers (mtDNA CN) in young adults. 

The specific objectives were to (1) Measure plasma 
SELENOP levels and mtDNA CN in regularly exercising 
and non-exercising healthy young adults; (2) Compare 
plasma SELENOP levels and mtDNA CN between regularly 
exercising and non-exercising healthy young adults, and 
(3) Assess the correlation between the two parameters in 
our studied population. This study measured the leucocyte 
mtDNA CN as an indicator of mitochondrial biogenesis 
and mitochondrial abundance in the cell.20 

METhODOLOgY 

Study design and participants 

This study was a cross-sectional, comparative study 
performed on 44 male student volunteers from the 
University of Medicine 2 (UM2), Yangon, Myanmar, 
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fasting blood sugar (FBS), systolic blood pressure, diastolic 
blood pressure, and mtDNA CN) respectively, were used 
to analyze statistically significant differences between 
regular-exercise and non-exercise groups. A p-value of 
<0.05 was set as the level of significance. Correlations 
between different variables were analyzed using Pearson's 
correlation coefficient. 

RESULTS 

The comparison of biochemical parameters between the 
non-exercise and regular-exercise groups are described 
in Table 1. The non-exercise group was found to be 
significantly older than the regular-exercise group (p<0.001), 
whereas no significant difference was found for height, 
weight, body mass index (BMI), systolic, or diastolic blood 
pressures. Notably, the regular-exercise group was found 
to have significantly lower FBS levels than the non-exercise 
group (p=0.001). 

Regularly exercising subjects had lower plasma 
SELENOP levels and higher mtDNA CN than non-
exercising counterparts 

As shown in Table 1, mean plasma SELENOP levels of the 
regular-exercise group (3.70 ± 0.80 µg/ml) was found to be 
significantly lower than the non-exercise group (4.63 ± 1. 30 
µg/ml) (p < 0.001) (Table 1 and Figure 1A). Mitochondrial 
DNA copy number (mtDNA CN) was also found to be 
significantly higher in the regular-exercise group than the 
non-exercise group (p < 0.001) (Table 1 and Figure 1B). 

To exclude the effect of age differences between the two 
groups, the subjects were initially stratified into two age 
groups (<18 years and ≥18 years), and the parameters 
were then compared in each group. As shown in Table 2, 

centration. After that, mtDNA CN in each sample was 
determined by quantitative PCR analysis of mitochondrial 
ND1 gene and normalized by simultaneous measurement 
of the nuclear gene, β-globulin (HBB) in QuantStudioTM 3 
Real-time PCR system using SYBRTM Green PCR Master 
Mix (Thermo Fisher Scientific, USA). The forward primer 
5’- CCC TAA AAC CCG CCA CAT CT-3’ and reverse 
primer 5’- GAG CGA TGG TGA GAG CTA AGG T-3’ were 
used for mitochondrial ND1 gene analysis. For the nuclear 
β-globulin (HBB) gene, the forward- 5’- GCT CGG TGC 
CTT TAG TGA TG- 3’ and reverse- 5’- AAA ACA TCA AGC 
GTC CCA TAG AC- 3' primer set was used. PCR reaction 
was performed twice with two sets of forward and reverse 
primers for the mitochondrial ND1 and nuclear HBB gene. 

After denaturation at 95°C for 10 minutes, the samples 
were subjected to 40 cycles of 95°C for 15 seconds and 60°C 
for 1 minute. The threshold cycle number (Ct) values were 
defined as the numbers of PCR cycles required to produce 
a 20ng DNA product. The Ct values of the ND1 and nuclear 
HBB gene were determined for each sample. The relative 
mitochondrial copy number in each sample was calculated 
by the Relative copy number (Rc) = 2-∆Ct, where ∆Ct is the 
CtHBB- CtND1 as described previously25. After which, fold 
changes in mtDNA CN in each sample were calculated by 
setting the mean for the control group as 1. 

Statistical analysis 

Data analysis was performed using IBM SPSS Statistics 
for Windows, Version 20.0. Data were expressed as 
mean ± standard deviation. The normal distribution of 
each parameter was checked by the Shapiro-Wilk test in 
SPSS. The student's t-test for parameters with a normal 
distribution (BMI, height, weight, and plasma SELENOP) 
and Mann-Whitney U test for non-normal data (Age, 

Table 1. Comparison of biochemical parameters of participants
Parameter Non-exercise group (N = 44) Regular-exercise group (N= 44) p value

Completed age (years) 18.27 ± 1.45 16.89 ± 0.75 < 0.001***
Height (m) 1.68 ± 0.06 1.71 + 0.05 0.017*
Weight (kg) 60. 13 ± 10. 80 61.89 ± 5.37 0.311
Body mass index (kg/m2) 21.09 ± 2.72 21.06 ± 1.60 0.941
Systolic blood pressure (mmHg) 114.55 ± 9.51 115.57 ± 7.17 0.570
Diastolic blood pressure (mmHg) 74.66 ± 8.03 74.00 ± 7.31 0.932
Fasting blood sugar (mg/dl) 103.70 ± 9.41 93.61 ± 13.78 0.001**
Plasma SELENOP (µg/ml) 4.63 ± 1. 30 3.70 ± 0.80 < 0.001***
mtDNA CN 1 ± 0.61 2.44 ± 0.81 < 0.001***
Results are expressed as mean ± standard deviation. p value was calculated by either Student’s unpaired t-test or Mann-Whitney U test for normally 
distributed and non-normally distributed parameters respectively. *p <0.05, **p <0.01 and ***p <0.001. 
Abbreviation; mtDNA CN = mitochondrial DNA copy numbers, SELENOP = Selenoprotein P

Table 2. Comparison of plasma SELENOP and mtDNA CN between non-exercise and regular-exercise groups stratified 
by age

Age <18 years Age ≥18 years
Non-exercise 
group (N = 15)

Regular-exercise 
group (N = 34) p Non-exercise 

group (N = 29)
Regular-exercise 

group (N = 10) p

Plasma SELENOP (ug/ml) 4.76 ± 1.36 3.60 ± 0.70 <0.001*** 4.57 ± 1.28 3.67 ± 1.01 0.049*
mtDNA CN 1.00 ± 0.66 2.35 ± 0.82 <0.001*** 1.00 ± 0.60 2.76 ± 0.72 <0.001***
Results are expressed as mean ± standard deviation. p-value was calculated by Student’s unpaired t-test for plasma SELENOP levels and Mann-Whitney U 
test for mtDNA CN respectively. *p<0.05, **p<0.01 and ***p<0.001. 
Abbreviation: mtDNA CN = mitochondrial DNA copy numbers, SELENOP = Selenoprotein P
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correlation was detected between plasma SELENOP and 
FBS (R=0.058, p=0.59), height (R=0.016, p=0.884), systolic and 
diastolic blood pressures (R=0.057, p=0.599 and R=0.055, 
p=0.614 respectively). A weak, positive but nonsignificant 
correlation was found between plasma SELENOP level 
and weight (R=0.203, p=0.058). Notably, there was a 
trend of negative correlation between plasma SELENOP 
levels and mtDNA CN (R=- 0.203), although the p-value 
failed to reach a statistically significant level (p=0.059). 

DISCUSSION 

Selenoprotein P (SELENOP) is the major selenium 
transport hepatokine. Its hepatic hypersecretion was 
previously reported to be associated with various metabolic 
disorders.16-19,21,26,27 In this regard, exploring various factors 
which can influence circulating SELENOP has interested 
researchers aiming for a more comprehensive manage-
ment of metabolic diseases. 

To examine whether regular exercise has benefits in 
reducing circulating SELENOP levels, we compared 
plasma SELENOP levels in non-exercising controls and 
regularly-exercising young adults. All the participants 
were relatively healthy male students between the ages of 
16 to 20 years. The two groups were comparable in height, 
weight, BMI, systolic and diastolic blood pressures. The 
only significant difference was that fasting blood glucose 
levels were lower in the regular-exercise group, consistent 
with the well-known beneficial effects of physical exercise 
on glucose metabolism.28-30 

the regular-exercise group had significantly lower plasma 
SELENOP with higher mtDNA CN than the non-exercise 
controls in both age strata. Therefore, our findings 
confirmed that the age difference between non-exercise 
and regular-exercise groups did not affect the statistically 
significant difference in plasma SELENOP levels and 
mtDNA CN between the two studied groups.

Correlation between plasma SELENOP levels and 
mtDNA CN 

We then analyzed the bivariate correlations between plasma 
SELENOP levels and various biochemical parameters in 
our subjects. As shown in Table 3, plasma SELENOP levels 
showed a significant, weak positive correlation with age 
(R=0.288, p=0.006) and BMI (R=0.273, p=0.01), while no 

Table 3. Bivariate correlation between plasma SELENOP 
levels and various metabolic parameters in the studied 
population (N= 88 )

Plasma SELENOP
Fasting blood sugar R = 0.058, p = 0.590
Age R = 0.288, p = 0.006**
BMI R = 0.273, p = 0.01*
Height R = 0.016, p = 0.884
Weight R = 0.203, p = 0.058
Systolic blood pressure R = - 0.057, p = 0.599
Diastolic blood pressure R = 0.055, p = 0.614
mtDNA CN R = - 0.203, p = 0.059 
Statistical method by Pearson’s correlation coefficient. *p< 0.05, **p< 0.01 
and ***p< 0.001. Abbreviation: BMI = Body Mass Index, mtDNA CN = 
mitochondrial DNA copy numbers, SELENOP = Selenoprotein P

Figure 1. Differences in (A) plasma SELENOP levels and (B) mtDNA CN between non-exercise and regular-exercise 
groups (N= 44 for each group). mtDNA CN was calculated by 2-∆CT values of mitochondrial ND1 gene copy number 
normalized to nuclear HBB gene. Fold changes in 2-∆CT were compared between the non-exercise group and regular-
exercise group. Data are presented with mean ± SD. 

***p<0.001 by Student’s unpaired t-test for plasma SELENOP levels and Mann-Whitney U test for mtDNA CN, respectively.

A B
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during exercise can stimulate antioxidant enzyme 
expression in skeletal muscle39-41 to restore intracellular 
redox homeo-stasis and protect from harmful oxidative 
damage. It was also reported that regular endurance 
exercise training increases GPX1 levels in skeletal 
muscles by 20%–177%.40 Furthermore, a previous paper 
reported that serum selenium concentrations was lower in 
professional athletes to synthesize GPX enzymes in skeletal 
muscles.23 As SELENOP is the major selenium supplier for 
synthesizing intracellular selenium-containing antioxidant 
enzymes, the cellular uptake and utilization of SELENOP 
may be augmented during antioxidant adaptation in 
chronic exercise, lowering its plasma level. In other words, 
our data suggest that SELENOP may have a particular 
crucial physiological role in the exercise-induced hormesis 
effect of habitual physical training. Further in-vivo and 
in-vitro uptake studies are recommended to address 
this hypothesis. 

As expected, the leucocyte mtDNA CN was found to be 
significantly higher in the regularly-exercising than non-
exercising individuals. That finding is consistent with 
the previous report25 supporting the effect of physical 
exercise on mitochondrial biogenesis. Peroxisome-
proliferator-activated receptor γ co-activator-1α (PGC-1α), 
the master regulator of mitochondrial biogenesis and 
exercise-induced H2O2 production in skeletal muscles, was 
reported to increase PGC-1α expression through AMPK 
activation.42 Then PGC-1α binds to and co-activates the 
transcriptional function of nuclear respiratory factors 1 
(NRF-1) on the promoter for mitochondrial transcription 
factor A (Tfam)12 to induce mtDNA replication. Therefore, 
transient induction of oxidative stress during physical 
exercise activates mitochondrial biogenesis via the AMPK- 
PGC-1α signaling cascade to improve mitochondrial 
quantity with higher oxidative capacity and ATP 
production during the physiological state of increased 
metabolic demand. 

Although it was not statistically significant, we found a 
trend of inverse correlation between antioxidant SELENOP 
levels and mtDNA CN in our population. The previous 
report also indicated higher mitochondrial DNA content 
in the skeletal muscle of trained SELENOP deficient mice 
than its wild-type counterparts.16 Therefore, we assume 
that the relationship between SELENOP and mtDNA CN 
might be bi-directional depending on metabolic conditions. 
During physiological adaptation of regular exercise, 
increased mitochondrial numbers with accelerated oxygen 
consumption and subsequent ROS production by physical 
exercise may lower plasma SELENOP level due to increased 
utilization for compensated antioxidant enzyme synthesis. 
On the other hand, when SELENOP is over-expressed, the 
over-activity of SELENOP and its reductive stress may 
suppress exercise-induced mitochondrial biogenesis in 
skeletal muscle.16 Failure to reach a statistically significant 
level in our study may be due to the fact that, contrary to 
the study of Misu et al,16 the participants in our study were 
healthy volunteers with plasma SELENOP levels within 

In this study, we also found that plasma SELENOP levels 
were significantly lower in regularly-exercising subjects 
compared to their non-exercising counterparts, indepen-
dent of age.  

To our best knowledge, this is the first report of the 
influence of long-term regular exercise on plasma 
SELENOP levels in healthy individuals. It was previously 
reported that plasma SELENOP levels did not change 
significantly after eight weeks of aerobic exercise training 
in sedentary postmenopausal women16 or after an acute 
bout of 60 minutes of moderate-intensity treadmill training 
in obese men.31 In contrast, the regularly exercising partici-
pants in this study were healthy young athletes who had 
been getting regular sports-type exercise training for 
approximately 20.06 ± 5.04 hours per week for more than 
two years. The training program included at least 3 hours 
per day, six days a week of endurance exercise such as 
running and jogging in addition to sports type-specific 
training for each student. Therefore, the type, duration and 
intensity of physical exercise may be the critical factors in 
exercise-mediated suppression of plasma SELENOP levels.

A previous study reported that plasma SELENOP 
levels were higher in patients with pulmonary arterial 
hypertension (PAH) compared with controls, and higher 
plasma SELENOP level was associated with poor outcomes 
in PAH patients.32 Moreover, higher plasma SELENOP 
levels were reported to be positively associated with 
carotid intima-media thickness and increased risk of heart 
failure.33,34 As our study found lower plasma SELENOP 
levels in regular exercise, it is possible that the cardio-
protective benefits of regular exercise may at least partly 
be mediated by its action on the reduction of plasma 
SELENOP levels. 

There are some potential mechanisms for lower plasma 
SELENOP levels in physical exercise. First, since the liver 
is the primary source of circulating SELENOP,35 the lower 
plasma SELENOP levels in regularly exercising persons 
may be due to lower hepatic SELENOP expression. 
Takayama et al36 reported that hepatic AMPK activation by 
metformin decreased nuclear localization and subsequent 
transcriptional inactivation of FoXO3, resulting in 
suppression of hepatic SELENOP expression. As physical 
exercise has been reported to enhance hepatic AMPK 
activities,37,38 exercise-induced AMPK-FoXO3 activation 
may be responsible for suppressing hepatic SELENOP 
expression and subsequent lower plasma SELENOP 
levels in physical exercise. More longitudinal and in-
vitro experiments are in great demand to confirm the 
assumption. 

Second, the lower SELENOP levels in the regular-exercise 
group may be related to accelerated uptake and cellular 
utilization of SELENOP by peripheral tissues to synthesize 
selenium-containing antioxidant enzymes. Regarding the 
concept of exercise-induced hormesis, previous literature 
reported that the physiological amount of ROS produced 
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the physiological range. Therefore, little variations in 
plasma SELENOP levels among participants, as well as the 
small sample size, may result in failure to achieve a statis-
tically significant correlation between the two variables. 
Large-scale clinical studies involving those with insulin 
resistance are recommended for future perspectives.

Limitations of the study 

Our study had certain limitations. We could not examine 
the course of plasma SELENOP changes with exercise 
duration because of our cross-sectional study design. A 
longitudinal study is recommended to analyze the time-
dependent changes in plasma SELENOP level and its 
physiological significance from acute to habitual exercise. 

CONCLUSIONS  

In conclusion, our study found lower plasma SELENOP 
levels and higher leucocyte mtDNA CN in the regular-
exercise group than the non-exercise group, which 
remained significant after stratifying the subjects into two 
age groups. These findings suggest that regular exercise 
training is an effective measure for improving mitochondrial 
function while lowering circulating SELENOP levels in 
humans. Further longitudinal studies are recommended 
for a better understanding of the role of SELENOP in 
exercise metabolism which can provide a new therapeutic 
approach to enhance the benefits of physical exercise in 
clinical settings. 
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