

The Efficacy and Safety of Myo-inositol Supplementation for the Prevention of Gestational Diabetes Mellitus in Overweight and Obese Pregnant Women: A Systematic Review and Meta-Analysis

Patricia Ann Factor¹ and Hannah Corpuz²

¹Department of Obstetrics and Gynecology, University of the Philippines – Philippine General Hospital ²Department of Internal Medicine, Ilocos Training and Regional Medical Center, San Fernando, La Union, Philippines

Abstract

Background. Myo-inositol has emerged as one of the preventive therapies for the development of gestational diabetes mellitus in at-risk populations. This systematic review and meta-analysis was conducted to determine the efficacy and safety of myo-inositol in decreasing the incidence of gestational diabetes in overweight and obese pregnant women.

Methodology. This meta-analysis was conducted using the standard Cochrane methodology and reported in accordance with the Preferred Reporting Items for Systematic Reviews and Meta-analyses (PRISMA) 2020 guidelines. Inclusion criteria were randomized controlled trials (RCTs) that enrolled overweight and obese pregnant women and used myo-inositol supplementation. The primary outcome was the incidence of gestational diabetes mellitus at 24-28 weeks. Secondary outcomes included cesarean section rate, the incidence of pregnancy-induced hypertension, macrosomia and preterm delivery. Risk ratios (RRs) and 95% confidence intervals (CIs) were used for dichotomous data.

Results. Six RCTs were included. Compared to standard micronutrient supplementation, standard dose of myo-inositol (4 g) may reduce the incidence of GDM (RR 0.54; CI [0.30, 0.96]; n = 887 women), but the certainty of evidence is low to very low. With low-dose myo-inositol however, evidence is uncertain about its benefit on the incidence of gestational diabetes mellitus in overweight and obese women with RR 0.71; CI [0.14, 3.50]. No adverse effects were noted. For the secondary outcomes, standard dose myo-inositol appears to reduce the incidence of pregnancy-induced hypertension and preterm delivery, but the certainty of evidence is low to very low.

Conclusion. Current evidence is uncertain on the potential benefit of myo-inositol supplementation in overweight and obese pregnant women. While studies show that 4 g myo-inositol per day may decrease the incidence of GDM, pregnancy-induced hypertension and pre-term birth with no associated risk of serious adverse events, the certainty of evidence is low to very low. Future high-quality trials may provide more compelling evidence to support practice recommendations.

Key words: gestational diabetes, obesity, inositol phosphates

INTRODUCTION

Gestational diabetes mellitus (GDM) is defined as any level of glucose intolerance diagnosed for the first time during pregnancy.¹ Pregnancies complicated by GDM are at risk of both short-term and long-term consequences. Adverse fetal outcomes include large for gestational age infants and stillbirths,^{2,3} while adverse maternal outcomes include the development of pre-eclampsia and gestational hypertension.^{2,4}

Being overweight and obese increases the risk of gestational diabetes mellitus.^{2,3} Adverse neonatal outcomes such as macrosomia have also been associated with elevated pre-pregnancy body mass index (BMI).⁴ In Asians, a BMI

eISSN 2308-118x (Online) Printed in the Philippines Copyright © 2023 by Factor and Corpuz. Received: January 5, 2023. Accepted: March 6, 2023. Published online first: July 15, 2023. https://doi.org/10.15605/jafes.038.02.11 \geq 25 kg/m² was associated with an odds ratio (OR) of 3.27 for the development of GDM.⁵

Myo-inositol

Myo-inositol is an insulin-sensitizing agent naturally found in fruits, nuts and beans. Upon binding with its receptor (IR), insulin induces IRS-1 recruitment and activation. One of the principal IR/IRS targets, PI3K, then generates Phosphatidylinositol to activate PDK1 and subsequently PKB/Akt. These actions are involved in GLUT4 translocation and glycogen synthesis. In essence, myo-inositol acts as a secondary messenger that facilitates the transfer of glucose into the cell.⁶

Corresponding author: Patricia Ann A. Factor, MD Clinical Associate Professor, Department of Obstetrics and Gynecology University of the Philippines - Philippine General Hospital Taft Avenue, Manila, Philippines 1000 Tel. No.: +632-85548400 E-mail: pafactor@up.edu.ph ORCiD: https://orcid.org/0000-0001-8081-6242

102 www.asean-endocrinejournal.org

Vol. 38 No. 2 November 2023

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License (https://creativecommons.org/licenses/by-nc/4.0/).

At the molecular level, insulin resistance is associated with a failure of insulin signaling, resulting in inadequate plasma membrane translocation of glucose transporter 4 (GLUT4). The increase in insulin sensitivity in patients who take myo-inositol may be an important intervention to prevent the development of GDM in high-risk women.⁷

Myo-inositol is a relatively cheap and widely available supplement that may be an effective strategy for GDM prevention in overweight/obese pregnant women. While studies have looked at the effect of myo-inositol supplementation in overweight and obese pregnant women, the sample sizes were not powered to detect differences in outcomes between groups.

OBJECTIVES

This review assessed if the supplementation of myoinositol among pregnant women with a BMI ≥ 25 kg/m² is safe and effective in preventing GDM and other adverse maternal and neonatal outcomes. Specifically, we answered the following research question: Among pregnant women with BMI ≥ 25 kg/m², does supplementation with myoinositol decrease the incidence of GDM, pregnancyinduced hypertension, cesarean section, preterm delivery and macrosomia?

METHODOLOGY

All published and unpublished randomized controlled trials assessing the effects of myo-inositol for the prevention of gestational diabetes mellitus among obese and overweight pregnant women were included. Case reports, observational studies and non-randomized trials were excluded.

We included trials that enrolled pregnant women classified as overweight or obese or whose body mass index is greater than or equal to 25 kg/m^2 . Women already diagnosed with gestational diabetes mellitus and pregestational diabetes were excluded.

The intervention investigated was myo-inositol administered at any dose, alone or in combination, to prevent GDM and other adverse perinatal outcomes. Studies that compared the intervention with standard micronutrient supplementation alone or in combination were included.

The primary efficacy outcome was the incidence of Gestational Diabetes Mellitus (as defined by the IADPS Criteria). The primary safety outcome was the incidence of adverse effects. Secondary outcomes included incidence of pregnancy-induced hypertension and Cesarean section. For neonatal outcomes, the incidence of macrosomia and preterm birth were included.

Search terms included inositol, myo-inositol, gestational diabetes mellitus, GDM, obese and overweight. Randomized control trial was used as a filter. We searched the

Figure 1. PRISMA Flowchart of Study Selection.

following databases from inception until March 3, 2022: The Cochrane Library, MEDLINE, Scopus, Google Scholar, MedRXIV, and Research Square. We also searched databases of unpublished, planned, and ongoing trials, including ClinicalTrials.gov (http://clinicaltrials.gov/), the EU Clinical Trials Register (https://www.clinicaltrialsregister.eu/), and the World Health Organization (WHO) International Clinical Trials Registry Platform Search Portal (https:// trialsearch.who.int/).

Data collection and analysis

Two review authors (HC, PF) independently scanned the title and abstract of every record retrieved to determine which studies should be assessed further. All potentially relevant articles were retrieved as full text and reviewed independently. Please refer to the adapted PRISMA (Preferred Reporting Items for Systematic Reviews and Meta-Analyses) flowchart of study selection (Figure 1).

Data extraction and management

Data were extracted by the two review authors (HC, PF) using a data extraction form based on the Cochrane Pregnancy and Childbirth Group's data extraction form. Any disagreements were resolved by discussion. Review Manager (RevMan v 5.4.1) was used to encode all data. All data was encoded in Review Manager.

Assessment of risk of bias in included studies

Two review authors (HC, PF) assessed the risk of bias in each included study independently. Disagreements were resolved by discussion. We used the Cochrane

Figure 2. Risk of bias graph: review author's judgement about each risk of bias item presented as percentage across all included studies.

Figure 3. Risk of bias summary: Review authors' judgements about each risk of bias item for each included study.

Collaboration tool for the assessment of the risk of bias. We judged the risk of bias as 'low risk,' 'high risk' or 'unclear risk' and evaluated individual bias items as described in the Cochrane Handbook for Systematic Reviews of Interventions. The risk of bias within and across studies was presented graphically using RevMan (Figures 2 and 3).

Measures of treatment effect

Dichotomous data were expressed as risk ratios (RRs) with 95% confidence intervals (CIs).

Assessment of heterogeneity

Heterogeneity was identified by visually examining the forest plot and using a standard Chi-test² with a significance level of $\alpha = 0.05$. The I² statistic was used to assess the impact of heterogeneity on the meta-analysis; an I² statistic of 50% or more indicates a considerable level of inconsistency. Study results were not reported as pooled effects because of substantial clinical and methodological heterogeneity.

Data synthesis

Because of substantial clinical and methodological heterogeneity, a random-effects model was used to summarize data.

Subgroup analysis and investigation of heterogeneity

The authors did a subgroup analysis of standard dose (4 g) vs. low dose (≤ 2 g) of myo-inositol. Certainty of evidence was graded using GradePro, and discrepancies were settled through consensus.

RESULTS

Search strategy

We identified 32 reports; fourteen were duplicates, and six were excluded at the title and abstract stage. Of the twelve studies assessed for eligibility, only six were included. The study selection schematic diagram is shown in Figure 1.

Study characteristics

We included six published randomized controlled trials: D'Anna 2015, Santamaria 2016, Farren 2017, Vitale 2020, Godfrey 2021 and Esmaelzadeh 2022.⁸⁻¹³ The baseline characteristics of the included studies are summarized in Table 1.

Duration of treatment with myo-inositol varied between studies. Most of the studies started upon recruitment at 10-16 weeks of gestation (AOG) and continued throughout the pregnancy.⁸⁻¹¹ In one study, it was given before conception until delivery.¹² In another study, myo-inositol was started upon recruitment at 12-14 weeks AOG until the 24th week of gestation.¹³

Effects of interventions

Primary outcomes

Incidence of gestational diabetes mellitus

For the mother, myo-inositol supplementation was associated with a reduction in the incidence of GDM in a

Table 1. Ge	eneral charact	eristics of the studies	S					
References	Country and time of realization	Participants and main inclusion criteria	Intervention and timing	Intervention group	Control Group	Maternal health outcomes	Feto-neonatal health outcomes	Metabolic outcomes
D'Anna et al. 2015	Italy January 2011 - April 2014	220 obese pregnant women from Italy	Intervention: 4 g myo-inositol plus 400 mg folic acid	Group A: (n = 97)	Group B: (n = 104)	GDM incidence Gestational hypertension	Preterm delivery Macrosomia Birth weight	OGTT – FBS, 1 st hr, and 2 nd hr
	·	Eligibility criteria: pre-pregnancy BMI	daily (2 g myo- inositol + 200 mg folic acid orally	Age: 30.09 (18-44)	Age: 31.7 (19-43)	Weight increase Adverse events	GA at birth Neonatal	
		gestation	twice a day), and nutritional and	BMI: 33.8 (30-46.9)	BMI: 33.8 (30-46)	oo fale	NICU admission	
			(n = 110)		400 mg folic acid daily (200 mg			
			Duration of myo-inositol supplementation:		folic acid orally twice a day), and nutritional			
			from trial entry until the end of pregnancy		and lifestyle counselling (n = 110)			
Santamaria	Italy	Overweight pregnant	Treatment arm:	Group A [.]	Group B [.]	GDM incidence	Preterm deliverv	OGTT -
et al. 2016	Beginning of 2012	women	2000 mg myo- inositol + 200 mcg	(n = 95)	(n = 102)	Gestational hypertension	Macrosomia Birth weight	FBS, 1 st hr, and 2 nd hr
	(36 months duration)	Inclusion criteria were: (1) pre-pregnancy BMI	folic acid 2x/day	Age: 32.1 (± 4.8)	Age: 32.7 (± 5.3)	Weight increase Adverse events	GA at birth Neonatal	
		425 and 530 kg/m²; (2) first trimester fasting	Duration of myo-inositol	BMI: 26.9	BMI: 27.1 (± 1.3)	CS rate	hypoglycemia NICU admission	
		plasma glucose <126 mg/dl and/or random glycemia <200 mg/dl; (3) single pregnancy; and (4) Caucasian ethnicity.	supplementation: from trial entry until the end of pregnancy	(± 1.3)	400 mcg folic acid per day			
Farren et al. 2017	Ireland January 2014 -	240 Pregnant women with a family history	1,100 mg myo- inositol + 27.6 mg	Group A: (n = 120)	Group B: (n = 120)	GD incidence Gestational	Preterm delivery Shoulder	OGTT
	January 2010	at their first visit between 10 and 16	400 mcg folic acid	Age: 31.1 ± 5.1	Age: 31.5 ± 5	Adverse events CS rate	Macrosomia Birthweight	
		weeks' gestation.	Duration: from enrollment	BMI: 26 ± 5.3	BMI: 26.2 ± 5.5		GA at birth Neonatal	
		Eligibility Criteria: Women with a family history in a first-degree relative of diabetes, either type 1 or type 2, were eligible for inclusion.	throughout pregnancy		400 mcg of folic acid per day		hypoglycemia NICU admission	

Figure 4. Forest plot of the effect of myo-inositol on the incidence of gestational diabetes mellitus in overweight and obese pregnant women.

References	Country and time of realization	Participants and main inclusion criteria	Intervention and timing	Intervention group	Control Group	Maternal health outcomes	Feto-neonatal health outcomes	Metabolic outcomes
Godfrey et al. 2021	Randomized, double-blind, controlled trial Multisite: New Zealand, UK, and Singapore	Women 18-38 years old planning conception Eligibitility Criteria: Aged 18–38 years, were planning to conceive within 6 months, and had future maternity care at the recruiting centers *included a sub- analysis of overweight and obese pregnant women using ethnic cut-offs: BMI >23 kg/m ² for Asians including Chinese, Indians, Pakistani, Bangladeshi, Malay, mixed Asian; >25 kg/m ² for non- Asians including White Caucasian, Polynesian, Black, mixed Asian- non-Asian	Intervention: additionally included myo- inositol 4 g/ day, vitamin D 10 µg/day, riboflavin 1.8 mg/ day, vitamin B6 2.6 mg/day, vitamin B12 5.2 µg/day, zinc 10 mg/day, and probiotics (Lactobacillus rhamnosus NCC 4007 [CGMCC 1.3724] and Bifdobacterium animalis subspecies lactis NCC 2818 [CNCM I-3446] Duration: from pre-conception throughout pregnancy	Group A: 128 No subgroup data regarding average age and BMI	Group B: 125 No subgroup data regarding average age and BMI Folic acid 400 µg/day, iron 12 mg/ day, calcium 150 mg/day, iodine 150µg/day, and β -carotene 720 µg/day	GDM incidence Adverse effects		OGTT
Vitale et al. 2020	Italy Beginning of 2016 and lasted 2 years	Overweight pregnant women Eligibility Criteria: pre- pregnancy BMI >25 and <30 kg/m², first-trimester fasting plasma glucose 126 mg/dl and/or random glycaemia <200 mg/dl, single pregnancy, and Caucasian ethnicity	Intervention: 2000 mg myo- inositol + 200 mcg folic acid 2x/day Intervention given from enrollment until 3 weeks postpartum	Group A: N = 110 Age: 27.18 ± 6.03 BMI: 27.00 ± 1.49	Group B: N = 113 Age: 27.95 ± 4.90 BMI: 26.68 ± 1.56 Control: Folic acid 200 mcg 2x/day	Incidence of GDM CS rate pregnancy- induced hypertension	macrosomia preterm delivery	change in lipid metabolism
Esmaelzadeh 2022	Iran From April 2018 - February 2020	Overweight pregnant women 12-14 weeks AOG Eligibility Criteria: Overweight pregnant women (BMI >25 kg/m ²)	Intervention: 2000 mg myo- inositol + 200 mcg folic acid a day Given from enrollment until 24 weeks AOG	Group A: n = 27 Age: 27.8 ± 4.2 BMI: 27.3 ± 1.8	Group B: n = 29 Age: 29.3 ± 4.4 BMI: 26.9 ± 1.9	GDM incidence Insulin therapy Weight gain Gestational hypertension CS rate	Preterm delivery Fetal macrosomia Shoulder dystocia NICU admissions RDS	OGTT Fasting insulin HOMA IR Total cholesterol trigyceride

dose-dependent manner in overweight and obese women. As seen in Figure 4, using the standard dose of 4 g, there appears to be a reduction in GDM (risk ratio 0.54, CI [0.30, 0.96]; n = 887). Using low-dose myo-inositol, the risk ratio is 0.71 with CI between [0.14, 3.50], crossing the line of no benefit. Thus, the evidence shows uncertain benefits of low-dose myo-inositol on the incidence of gestational diabetes mellitus in overweight and obese women.

There was significant heterogeneity in the studies, with I² of 78% and 82% for standard dose myo-inositol and lowdose myo-inositol, respectively. For standard dose myoinositol, the heterogeneity is most likely due to differences in ethnicity, with Godfrey including mixed races, while D'Anna, Santamaria and Vitale had a predominantly Italian population.^{8,9,11,12} The presence of other micronutrients with myo-inositol is also a notable difference between Godfrey and the studies done in Italy which may also explain the significant heterogeneity. For the low dose myo-inositol, I² was 82%; this may be explained by the difference in the study population, the duration of intervention and the addition of D-chiro-inositol.¹⁰ Using GRADEpro Guideline Development Tool, standard dose (4 g) myo-inositol may decrease the risk of gestational diabetes mellitus in overweight and obese pregnant women, while low dose myo-inositol has no effect on the incidence of GDM. Certainty of evidence is very low because of a high risk of performance bias, inconsistency and imprecision. The risk of GDM in women who received 4g myo-inositol is 15.3%, while for women in the control group, the risk is 28.4%.

Adverse events

All studies looked into the rate of adverse events with the intake of myo-inositol. In all studies, no significant adverse events were observed for both treatment and placebo groups.

Secondary outcomes

Incidence of cesarean section

Three trials reported on cesarean section rate with the intake of myo-inositol in obese and overweight pregnant women.^{8,9,13} For standard dose myo-inositol, RR was 0.89

	Myo-ine	ositol	Cont	rol		Risk Ratio	Risk Ratio
Study or Subgroup	Events	Total	Events	Total	Weight	M–H, Random, 95% CI	M-H, Random, 95% CI
1.2.1 Standard Dose	e (4g) Myo	-inosite	ol				
D'Anna 2015	38	95	49	102	48.4%	0.63 [0.61, 1.14]	
Santamaria 2016	42	97	48	104	51.6%	0.94 [0.69, 1.28]	
Subtotal (95% CI)		192		206	100.0%	0.89 [0.71, 1.11]	•
Total events	60		97				
Heteropeneity: Tau ² =	= 0.00: Ch	r ² = 0.2	8. df = 1	$(\mathbf{P}=0)$.60): I ² =	0%	
Test for overall effect	: Z = 1.08	$\langle \mathbf{P}=0.$	28)				
1.2.2 Low Dose Myo	-inositol						
Esmaelzadeh 2021	17	27	19	29	100.0%	0.96 [0.65, 1.42]	
Subtotal (95% CI)		27		29	100.0%	0.96 [0.65, 1.42]	●
Total events	17		19				
Heterogeneity: Not ap	plicable						
Test for overall effects	: Z = 0.20	$(\mathbf{P}=0)$	84)				
							0.05 0.2 1 5 2
							Favours Myo-inositol Favours Placebo
Test for subgroup diff	ferences: C	Chf = 0.	13, df =	1 (P =	0.72), ř	- 0%	

Figure 5. Forest plot of the effect of myo-inositol on the Cesarean Section rate in overweight and obese pregnant women.

	Myo-inositol Control			rol		Risk Ratio	Risk Ratio		
Study or Subgroup	Events Total Events Total		Weight	M-H, Random, 95% CI	M-H, Random, 95% CI				
1.3.1 Standard Dose	(4g) Myo-	-inosito	ol –						
D'Anna 2015	0	97	6	104	5.9%	0.08 [0.00, 1.44]			
Santamaria 2016	1	95	4	102	10.2%	0.27 [0.03, 2.36]			
Vitale 2020	6	110	24	113	64.0%	0.34 [0.16, 0.73]			
Subtotal (95% CI)		302		319	100.0%	0.31 [0.15, 0.61]	◆		
Total events	9		34						
1.3.2 Low Dose Myo	-inositol	, - v.				A 20 IA AD A 441	_		
Subtotal (95% CI)	U	27	1	29	100.0%	0.36 [0.02, 8.41]			
Total events Heterogeneity: Not ap Test for overall effect:	0 plicable Z = 0.64	(P = 0.)	1 52)						
Test for subgroup diff	ferences: C	:hl² = Q.	01, df =	1 (P =	0.93), ř	- 0%	0.005 0.1 1 10 20 avours Myo-inositol Favours Placebo		

Figure 6. Forest plot of the effect of myo-inositol on the incidence of pregnancy-induced hypertension in overweight and obese pregnant women.

with 95% CI [0.71, 1.11], while for low dose myo-inositol, RR was 0.96 with 95% CI [0.65 to 1.42] as seen in Figure 5.

Based on the evidence, both 4 g myo-inositol and lowdose myo-inositol do not reduce the cesarean section rate in obese and overweight pregnant women. Evidence was of moderate to low certainty because of the serious risk of bias and imprecision.

Incidence of pregnancy-induced hypertension

Four studies as seen in Figure 6 examined the incidence of pregnancy-induced hypertension (PIH).^{89,11,13} For the studies that used the standard dose of myo-inositol, the relative risk of PIH is 0.31 with 95% CI [0.15, 0.61], (3 trials, n = 621; random effects model). Standard dose myo-inositol seems to reduce the incidence of PIH, but this is based on

very low certainty of evidence. The evidence of the benefit of 4 g myo-inositol in decreasing PIH was downgraded to very low because of the serious risk of bias in the studies included and the very serious imprecision in D'Anna and Santamaria, where the confidence intervals crossed the line of no benefit.

For low-dose myo-inositol, while the relative risk is 0.36, the 95% CI [0.02, 8.41] is too wide and crosses the line of no benefit. Low-dose myo-inositol does not decrease the incidence of PIH, based on low certainty of evidence due to very serious imprecision.

Incidence of pre-term birth

Three trials studied the incidence of preterm delivery in overweight and obese women who took myo-inositol.^{8,9,13}

	Myo-ind	ositol	Control			Risk Ratio	Risk Ratio
Study or Subgroup	Events Total		Events	Events Total Weight M-H,		M-H, Random, 95% C	I M-H, Random, 95% CI
1.4.1 Standard Dose	(4g) Myo	-inosito	bl				
Santamaria 2016	2	95	6	102	40.6%	0.27 [0.06, 1.23]]
D'Anna 2015	3	97	10	104	59.4%	0.32 [0.09, 1.13]	i —
Subtotal (95% CI)		192		206	100.0%	0.30 [0.11, 0.79]	
Total events	5		18				
Heterogeneity: Tau ² =	- 0.00; Ch	² = 0.0	3. df = 1	$(\mathbf{P}=0)$.86); i ² =	0%	
Test for overall effect:	: Z = 2.44	$(\mathbf{P}=0.0)$	01)				
1.4.2 Low Dose Myo	-inositol						
Esmaelzadeh 2021	2	27	3	29	100.0%	0.72 [0.13, 3.96]]
Subtotal (95% CI)		27		29	100.0%	0.72 [0.13, 3.96]	
Total events	2		3				
Heterogeneity: Not ap	plicable						
Test for overall effect:	Z = 0.38	(P = 0.)	70)				
							0.01 0.1 1 10 10
							Favours Myo-inositol Favours Placebo
Test for subgroup diff	ferences: C	;hf = 0.	.76, df =	1 (P =	0.36), ۴	- 0%	and a second secon

Figure 7. Forest plot of the effect of myo-inositol on the incidence of pre-term birth in overweight and obese pregnant women.

	Myo-inositol Control			Risk Ratio	Risk Ratio		
Study or Subgroup	Events Total		Events	ents Total Weig		M-H, Random, 95% CI	M-H, Random, 95% Cl
1.5.1 Standard Dose	(4g) Myo-	-inosito	bl				
Santamaria 2016	1	95	5	102	35.0%	0.21 [0.03, 1.80]	_
D'Anna 2015	5	97	5	104	65.0%	1.07 [0.32, 3.59]	
Subtotal (95% CI)		192		206	100.0%	0.61 [0.13, 2.81]	
Total events	6		10				
Heterogeneity: Tau ² =	• 0.55; Chi	ř = 1.7	1, df = 1	$(\mathbf{P}=0)$.19); l ² =	41%	
Test for overall effect:	: Z = 0.63	$\langle \mathbf{P} = 0 \rangle$	53)		-		
1.5.2.1	in a site l						
1.5.2 LOW Dose Myo	-inositoi						<u> </u>
Esmaelzadeh 2021	2	27	2	29	100.0%	1.07 [0.16, 7.10]	
Subtotal (95% CI)		27		29	100.0%	1.07 [0.16, 7.10]	
Total events	2		2				
Heterogeneity: Not ap	plicable						
Test for overall effect:	Z = 0.07	(P = 0.5)	94)				
						t.	
						U	.UI U.I I IU .
Test for subgroup diff	ferences: C	$ht^2 = 0.$.21. df =	1 (P =	0.65), P	= 0%	Yours Myo-mositor Favours Placedo
				- •	*·**// ·	*	

Figure 8. Forest plot of the effect of myo-inositol on the incidence of macrosomia in overweight and obese pregnant women.

In the subgroup of women who received standard dose myo-inositol, the RR was 0.30 with 95% CI [0.11, 0.61], (2 studies; n = 398), while for those given low dose myo-inositol, the RR was 0.72 with 95% CI [0.13, 3.96], (1 study, n = 56).^{89,13} This is shown in Figure 7.

The evidence suggests that standard dose myo-inositol results in a slight reduction in the incidence of pre-term birth but certainty of evidence is low because of the serious risk of imprecision across the studies included. For low-dose myo-inositol, the evidence suggests that it does not decrease the risk of pre-term birth. The evidence is of low certainty because of the very wide confidence interval that crosses the line of no benefit in Esmaelzadeh.¹³

Incidence of macrosomia

One of the complications of gestational diabetes mellitus is the increased risk for macrosomia. Figure 8 shows the three studies that looked into the incidence of macrosomia in obese and pregnant women.^{8,9,13}

In patients given standard dose myo-inositol, the RR was 0.61 with 95% CI [0.13, 2.81], (2 studies; n = 398). Since the confidence interval crossed the line of no benefit, the evidence suggests that myo-inositol does not decrease the incidence of macrosomia compared to standard micro-nutrient supplementation. The certainty of the evidence was downgraded to low because of the serious risk of performance bias, inconsistency across studies and imprecision in the pooled outcome. Low-dose myo-inositol, (RR 1.07 95% CI [0.16, 7.10], 1 study; n = 56), does not decrease the incidence of macrosomia in overweight and obese pregnant women. The certainty of the evidence was low due to the serious risk of bias and very wide confidence interval.^{8,13}

DISCUSSION

Summary of main results

Evidence from six studies demonstrates a possible benefit of 4 g myo-inositol in reducing the incidence of gestational diabetes mellitus among overweight or obese pregnant women, but the evidence is uncertain. None of the studies reported serious adverse events from myo-inositol (Table 2).

For the secondary outcomes, there is a trend of reduction in the incidence of pre-term birth and incidence of pregnancyinduced hypertension in the standard dose (4 g) myoinositol group, but the evidence is uncertain. The certainty of the evidence was downgraded because of the high risk of bias from the open-label design of the studies and the wide confidence intervals across the studies and in the pooled effects (Table 2).

Overall completeness and applicability of evidence

Participants in the included trials were pregnant women classified as overweight and obese or those with a BMI of 25 kg/m² or greater. These patients were at higher risk of developing GDM compared to women with normal BMI. Although one study included participants with different ethnicities, and another study conducted in the Middle East, the majority of the participants were Caucasians; hence applicability may be limited.

Certainty of evidence

Using GRADEpro, we determined the certainty of the current evidence for the incidence of GDM, caesarian section, pregnancy-induced hypertension, macrosomia and pre-term birth to be very low to low (Table 3).

The review results are based on six randomized controlled trials; three included trials were open-label in design and hence were assigned a high risk of bias in the parameter of blinding of participants and personnel. The certainty of the evidence was also downgraded because some results were inconsistent across studies. Due to the small number of patients and few observed events, the pooled results are less precise and confidence intervals are wide.

Potential biases in the review process

Communication was done through electronic mail with authors of studies when further information or clarification was needed. However, the literature search was limited to English-language articles.

CONCLUSIONS

Implications for practice

Supplementation with myo-inositol to reduce the risk of gestational diabetes mellitus among overweight or

obese women is not currently in management guidelines. While evidence from this review demonstrated a possible benefit in the reduction of the incidence of GDM among overweight and obese pregnant women, certainty of the evidence is very low due to the high risk of bias (i.e., open-label design of many of the included studies), inconsistency of study results, and imprecision. The relatively small representation of other ethnicities with a high risk of gestational diabetes mellitus may also limit the applicability of current evidence.

In addition, the safety data evaluated was only for adverse events, and no long-term outcomes such as IQ, BMI or incidence of developmental delay among offspring of women given myo-inositol were reported.

Future high-quality clinical trials may provide more compelling evidence to support practice recommendations. At the moment, there is not enough evidence to support its clinical use for preventing GDM among overweight and obese women.

Implications for research

Applicability may be limited due to predominantly Caucasian participants in the included studies; hence future trials with representative ethnicities are recommended. Trials that reduce the risk of performance bias by ensuring the blinding of participants will also improve evidence quality.

Registration

This protocol was registered in the International Prospective Register of Systematic Reviews (PROSPERO) on May 15, 2022 (CRD42022330250). Available from: https://www.crd.york.ac.uk/ prospero/display_record.php?ID=CRD42022330250

Availability of data collection forms

Data collection forms and extracted data are available upon request to the corresponding author.

Statement of Authorship

The authors certified fulfillment of ICMJE authorship criteria.

CRediT Author Statement

PAF: Conceptualization, Methodology, Software, Validation, Formal analysis, Investigation, Resources, Data Curation, Writing – original draft preparation, Writing – review and editing, Visualization, Supervision, Project administration; **HUC:** Conceptualization, Methodology, Software, Validation, Formal analysis, Investigation, Resources, Data Curation, Writing – original draft preparation, Writing – review and editing, Visualization, Supervision, Project administration.

Conflict of Interest

The authors have no conflicts of interest to disclose.

Funding Source None. **Table 2.** Summary of findings: Myo-inositol compared to standard micronutrient supplementation for prevention of GDM in overweight and obese pregnant women

Patient or population: prevention of GDM in overweight and obese pregnant women Intervention: Myo-inositol Comparison: standard micronutrient supplementation											
Outcomes	Anticipated absolute Risk with standard micronutrient supplementation	ipated absolute effects' (95% CI) with standard cronutrient plementation		№ of participants (studies)	Certainty of the evidence (GRADE)	Comments					
Incidence of (Gestational Diabetes M	ellitus									
Standard Dose (4 g) Myo-inositol	284 per 1,000	153 per 1,000 (85 to 273)	RR 0.54 (0.30 to 0.96)	887 (4 RCTs)	⊕⊖⊖⊖ Very low ^{a,b,c}	Four grams myo-inositol may reduce/have little to no effect on incidence of gestational diabetes mellitus but the evidence is very uncertain.					
Low Dose Myo-inositol	287 per 1,000	204 per 1,000 (40 to 1,000)	RR 0.71 (0.14 to 3.50)	176 (2 RCTs)	⊕⊖⊖⊖ Very low ^{d,e,f}	The evidence is very uncertain about the effect of low dose myo-inositol on incidence of gestational diabetes mellitus.					
Cesarean Section Rate											
Standard Dose (4 g) Myo-inositol	471 per 1,000	419 per 1,000 (334 to 523)	RR 0.89 (0.71 to 1.11)	398 (2 RCTs)	⊕⊕⊖⊖ Low ^{g,h}	The evidence suggests that 4 g myo-inositol does not reduce cesarean section rate.					
Low Dose Myo-inositol	655 per 1,000	629 per 1,000 (426 to 930)	RR 0.96 (0.65 to 1.42)	56 (1 RCT)	⊕⊕⊕⊖ Moderate ⁱ	Two grams myo-inositol probably does not reduce cesarean section rate					
Incidence of I	Pregnancy Induced Hy	pertension									
Standard Dose (4 g) Myo-inositol	107 per 1,000	33 per 1,000 (16 to 65)	RR 0.31 (0.15 to 0.61)	621 (3 RCTs)	⊕⊖⊖⊖ Very low ^{a,j}	Four grams myo-inositol may reduce/have little to no effect on pregnancy induced hypertension but the evidence is very uncertain.					
Low Dose Myo-inositol	34 per 1,000	12 per 1,000 (1 to 290)	RR 0.36 (0.02 to 8.41)	56 (1 RCT)	⊕⊕⊖⊖ Low ^k	The evidence suggests that 2 g myo-inositol does not reduce pregnancy induced hypertension.					
Incidence of I	Pre-term Birth										
Standard Dose (4 g) Myo-inositol	87 per 1,000	26 per 1,000 (10 to 69)	RR 0.30 (0.11 to 0.79)	398 (2 RCTs)	⊕⊕⊖⊖ Low ^{a,l}	The evidence suggests 4 g myo-inositol results in a slight reduction in incidence of pre-term birth.					
Low Dose Myo-inositol	103 per 1,000	74 per 1,000 (13 to 410)	RR 0.72 (0.13 to 3.96)	56 (1 RCT)	⊕⊕⊖⊖ Low ^m	The evidence suggests that 2 g myo-inositol does not reduce incidence of pre-term birth.					
Incidence of I	Macrosomia										
Standard Dose (4 g) Myo-inositol	49 per 1,000	30 per 1,000 (6 to 136)	RR 0.61 (0.13 to 2.81)	398 (2 RCTs)	⊕⊖⊖⊖ Very low ^{a,i,n,o}	The evidence is very uncertain about the effect of 4 g myo-inositol on incidence of macrosomia.					
Low Dose Myo-inositol	69 per 1,000	74 per 1,000 (11 to 490)	RR 1.07 (0.16 to 7.10)	56 (1 RCT)		Two grams myo-inositol may result in little to no difference in incidence of macrosomia.					

*The risk in the intervention group (and its 95% confidence interval) is based on the assumed risk in the comparison group and the relative effect of the intervention (and its 95% CI).

CI: confidence interval; RR: risk ratio

GRADE Working Group grades of evidence:

High certainty: we are very confident that the true effect lies close to that of the estimate of the effect.

Moderate certainty: we are moderately confident in the effect estimate: the true effect is likely to be close to the estimate of the effect, but there is a possibility that it is substantially different.

Low certainty: our confidence in the effect estimate is limited: the true effect may be substantially different from the estimate of the effect.

Very low certainty: we have very little confidence in the effect estimate: the true effect is likely to be substantially different from the estimate of effect.

Explanations:

a. Very serious risk of bias because D'Anna 2015, Santamaria 2016, and Vitale 2020 were open-label studies.

- b. Serious inconsistency, in Godfrey 2021, the intake of myo-inositol is of no clear benefit from placebo in GDM incidence with a RR 1.05 (95% Cl = 0.73, 1.51) compared to the other 3 studies (D'Anna 2015, Santamaria 2016, and Vitale 2020) which all showed benefit.
- c. Serious imprecision, the RR for developing GDM in the 4 g dose group is 0.54 but the 95% CI = 0.30, 0.96 is very wide.
- d. Serious risk of bias, for Farren 2017, there was no mention of blinding of participants, personnel, and outcome assessors.
- e. Serious inconsistency Farren 2017 showed an increase in the incidence of GDM, while Esmaelzadeh 2022 showed some benefit.
- f. Serious imprecision the confidence interval for preventing GDM is very wide, RR 0.71 95% CI = 0.14, 3.50.
- g. Very serious risk of bias because D'Ana 2015 and Santamaria 2016 are both open-label studies.
- h. Serious imprecision the confidence intervals of the individual studies and the pooled effects are wide and cross the line of no benefit.
- i. Serious imprecision the confidence interval is wide for Esmaelzadeh 2022.
- j. Very serious imprecision D'Anna 2015 and Santamaria 2016 have wide confidence intervals that crossed the no-effect line.
- k. Serious imprecision The Esmaelzadeh 2022 study has a very wide confidence interval for PIH (95% CI = 0.02, 8.41) which crosses the line of no effect.
- I. Serious imprecision The confidence interval for both D'Anna 2015 and Santamaria 2016 crossed the line of no benefit. m. Very serious imprecision - The confidence interval for the Esmaelzadeh 2022 study in reducing the risk of pre-term birth is very wide, with 95% CI = 0.16,
- 7.1.
 n. Serious inconsistency Santamaria 2016 showed a trend toward benefit in terms of macrosomia, while D'Anna 2015 showed no benefit of giving myo-inositol for decreasing macrosomia. Furthermore, the pooled effects crossed the line of no benefit.
- o. Very serious imprecision there was a wide confidence interval on the effect of 4 g myo-inositol on the incidence of fetal macrosomia.
- p. Very serious imprecision For the Esmaelzadeh 2021 study, the confidence interval for the incidence of macrosomia was wide, with 95% CI = 0.16, 7.1.

Table 3. Myo-inositol compared to standard micronutrient supplementation for prevention of GDM in overweight and obese pregnant women

		Certa	ainty asses	sment			Summary of findings				
Dout	i					Study event rates (%)			Anticipated absolute effects		
cipants (studies) Follow-up	Risk of bias	Incon- sistency	Indirect- ness	Impre- cision	Publi- cation bias	Overall certainty of evidence	With standard micronutrient supplemen- tation	With Myo- inositol	Relative effect (95% CI)	Risk with standard micro- nutrient supple- mentation	Risk difference with Myo-inositol
Incidence of Gestational Diabetes Mellitus - Standard Dose (4 g) Myo-inositol											
887 (4 RCTs)	very seriousª	serious⁵	not serious	serious⁰	none	⊕⊖⊖⊖ Very low	127/447 (28.4%)	77/440 (17.5%)	RR 0.54 (0.30 to 0.96)	284 per 1,000	131 fewer per 1,000 (from 199 fewer to 11 fewer)
Incidence of Gestational Diabetes Mellitus - Low Dose Myo-inositol											
176 (2 RCTs)	serious⁴	serious ^e	not serious	serious ^f	none	⊕⊖⊖⊖ Very low	25/87 (28.7%)	25/89 (28.1%)	RR 0.71 (0.14 to 3.50)	287 per 1,000	83 fewer per 1,000 (from 247 fewer to 718 more)
Cesarean	Section F	Rate - 4 g l	Myo-inosito	bl							
398 (2 RCTs)	serious ⁹	not serious	not serious	serious ^h	none	⊕⊕⊖⊖ Low	97/206 (47.1%)	80/192 (41.7%)	RR 0.89 (0.71 to 1.11)	471 per 1,000	52 fewer per 1,000 (from 137 fewer to 52 more)
Cesarean	Section F	Rate - 2 g l	Myo-inosito	ol 🛛							
56 (1 RCT)	not serious	not serious	not serious	serious ⁱ	none	⊕⊕⊕⊖ Moderate	19/29 (65.5%)	17/27 (63.0%)	RR 0.96 (0.65 to 1.42)	655 per 1,000	26 fewer per 1,000 (from 229 fewer to 275 more)
Pregnanc	y Induced	Hyperten	sion - 4 g l	Myo-inosito	ol 🛛						
621 (3 RCTs)	very seriousª	not serious	not serious	very serious ^j	none	⊕⊖⊖⊖ Very low	34/319 (10.7%)	9/302 (3.0%)	RR 0.31 (0.15 to 0.61)	107 per 1,000	74 fewer per 1,000 (from 91 fewer to 42 fewer)
Pregnancy	y Induced	Hyperten	sion - 2 g l	Nyo-inosito	ol 🛛						
56 (1 RCT)	not serious	not serious	not serious	very serious ^k	none	⊕⊕⊖⊖ Low	1/29 (3.4%)	0/27 (0.0%)	RR 0.36 (0.02 to 8.41)	34 per 1,000	22 fewer per 1,000 (from 34 fewer to 256 more)
Incidence	of Pre-ter	rm Birth -	4 g Myo-in	ositol							
398 (2 RCTs)	seriousª	not serious	not serious	serious ^ı	none	⊕⊕⊖⊖ Low	18/206 (8.7%)	5/192 (2.6%)	RR 0.30 (0.11 to 0.79)	87 per 1,000	61 fewer per 1,000 (from 78 fewer to 18 fewer)
Incidence	of Pre-ter	rm Birth -	2 g Myo-in	ositol							
56 (1 RCT)	not serious	not serious	not serious	very serious [™]	none	⊕⊕⊖⊖ Low	3/29 (10.3%)	2/27 (7.4%)	RR 0.72 (0.13 to 3.96)	103 per 1,000	29 fewer per 1,000 (from 90 fewer to 306 more)
Incidence	of Macro	somia - 4	g Myo-inos	itol							
398 (2 RCTs)	seriousª	very serious ⁿ	not serious	very serious ^{i,o}	none	⊕⊖⊖⊖ Very low	10/206 (4.9%)	6/192 (3.1%)	RR 0.61 (0.13 to 2.81)	49 per 1,000	19 fewer per 1,000 (from 42 fewer to 88 more)
Incidence	of Macro	somia - 2	g Myo-inos	itol							
56 (1 RCT)	not serious	not serious	not serious	very serious ^p	none		2/29 (6.9%)	2/27 (7.4%)	RR 1.07 (0.16 to 7.10)	69 per 1,000	5 more per 1,000 (from 58 fewer to 421 more)

CI: confidence interval; RR: risk ratio

Explanations

a. Very serious risk of bias because D'Anna 2015, Santamaria 2016, and Vitale 2020 were open-label studies.

b. Serious inconsistency, in Godfrey 2021, the intake of myo-inositol is of no clear benefit from placebo in GDM incidence with a RR 1.05 (95% Cl = 0.73, 1.51) compared to the other 3 studies (D'Anna 2015, Santamaria 2016, and Vitale 2020) which all showed benefit.

c. Serious imprecision, the RR for developing GDM in the 4 g dose group is 0.54 but the 95% CI = 0.30, 0.96 is very wide.

d. Serious risk of bias, for Farren 2017, there was no mention of blinding of participants, personnel, and outcome assessors.

e. Serious inconsistency - Farren 2017 showed an increase in the incidence of GDM, while Esmaelzadeh 2022 showed some benefit.

f. Serious imprecision - the confidence interval for preventing GDM is very wide, RR 0.71 95% CI = 0.14, 3.50.

g. Very serious risk of bias because D'Ana 2015 and Santamaria 2016 are both open-label studies.

h. Serious imprecision - the confidence intervals of the individual studies and the pooled effects are wide and cross the line of no benefit.

i. Serious imprecision - the confidence interval is wide for Esmaelzadeh 2022.

j. Very serious imprecision - D'Anna 2015 and Santamaria 2016 have wide confidence intervals that crossed the no-effect line.

k. Serious imprecision - The Esmaelzadeh 2022 study has a very wide confidence interval for PIH, (95% CI = 0.02, 8.41) which crosses the line of no effect.

I. Serious imprecision - The confidence interval for both D'Anna 2015 and Santamaria 2016 crossed the line of no benefit.
 m. Very serious imprecision - The confidence interval for the Esmaelzadeh 2022 study in reducing the risk of pre-term birth is very wide, with 95% CI = 0.16, 7.1.

n. Serious inconsistency - Santamaria 2016 showed a trend toward benefit in terms of macrosomia, while D'Anna 2015 showed no benefit of giving myoinositol for decreasing macrosomia. Furthermore, the pooled effects crossed the line of no benefit.

o. Very serious imprecision - there was a wide confidence interval on the effect of 4 g myo-inositol on the incidence of fetal macrosomia.

p. Very serious imprecision - For the Esmaelzadeh 2021 study, the confidence interval for the incidence of macrosomia was wide 95% CI = 0.16, 7.1

References

- Proceedings of the 4th International Workshop-Conference on gestational diabetes mellitus. Chicago, Illinois, USA. 14-16 March 1997. Diabetes Care. 1998;21(Suppl 2):B1-167. PMID: 9841138.
- Vernini JM, Moreli JB, Magalhães CG, Costa RAA, Rudge MVC, Calderon IMP. Maternal and fetal outcomes in pregnancies complicated by overweight and obesity. Reprod Health. 2016;13(1):100. PMID: 27567898. PMCID: PMC5002321. https://doi.org/10.1186/s12978-016-0206-0.
- Sun Y, Shen Z, Zhan Y, et al. Effects of pre-pregnancy body mass index and gestational weight gain on maternal and infant complications. BMC Pregnancy Childbirth. 2020;20(1):1–13. PMID: 32631269. PMCID: PMC7336408. https://doi.org/10.1186/s12884-020-03071-y.
- Melchor I, Burgos J, Del Campo A, Aiartzaguena A, Gutiérrez J, Melchor JC. Effect of maternal obesity on pregnancy outcomes in women delivering singleton babies: A historical cohort study. J Perinat Med. 2019;47(6):625–30. PMID: 31141492. https://doi.org/10.1515/ jpm-2019-0103.
- Lee KW, Ching SM, Ramachandran V, et al. Prevalence and risk factors of gestational diabetes mellitus in Asia: A systematic review and metaanalysis. BMC Pregnancy Childbirth. 2018;18(1):494. PMID: 30547769. PMCID: PMC6295048. https://doi.org/10.1186/s12884-018-2131-4.
- Formoso G, Baldassarre MPA, Ginestra F, Carlucci MA, Bucci I, Consoli A. Inositol and antioxidant supplementation: Safety and efficacy in pregnancy. Diabetes Metab Res Rev. 2019;35(5):e3154. PMID: 30889626. PMCID: PMC6617769. https://doi.org/10.1002/dmrr.3154.
- D'Anna R, Santamaria A, Alibrandi A, Corrado F, Benedetto A Di, Facchinetti F. Myo-inositol for the prevention of gestational diabetes mellitus. A brief review. J Nutr Sci Vitaminol (Tokyo). 2019;65(Suppl):S59-61. PMID: 31619648. https://doi.org/10.3177/jnsv. 65.S59.

- D'Anna R, Di Benedetto A, Scilipoti A, et al. Myo-inositol supplementation for prevention of gestational diabetes in obese pregnant women: A randomized controlled trial. Obstet Gynecol. 2015;126(2):310–5. PMID: 26241420. https://doi.org/10.1097/AOG. 000000000000958.
- Santamaria A, Di Benedetto A, Petrella E, et al. Myo-inositol may prevent gestational diabetes onset in overweight women: A randomized, controlled trial. J Matern Neonatal Med. 2016;29(19):3234–7. PMID: 26698911. https://doi.org/10.3109/14767058.2015.1121478.
- Farren M, Daly N, McKeating A, Kinsley B, Turner MJ, Daly S. The prevention of gestational diabetes mellitus with antenatal oral inositol supplementation: A randomized controlled trial. Diabetes Care. 2017;40(6):759–63. PMID: 28325784. https://doi.org/10.2337/dc16-2449.
- Vitale SG, Corrado F, Caruso S, et al. Myo-inositol supplementation to prevent gestational diabetes in overweight non-obese women: Bioelectrical impedance analysis, metabolic aspects, obstetric and neonatal outcomes–a randomized and open-label, placebo-controlled clinical trial. Int J Food Sci Nutr. 2021;72(5):670–9. PMID: 33238798. https://doi.org/10.1080/09637486.2020.1852191.
- Godfrey KM, Barton SJ, El-Heis S, et al. Myo-inositol, probiotics, and micronutrient supplementation from preconception for glycemia in pregnancy: Nipper international multicenter double-blind randomized controlled trial. Diabetes Care. 2021;44(5):1091–9. PMID: 33782086. PMCID: PMC8132330. https://doi.org/10.2337/dc20-2515.
- Esmaeilzadeh S, Ghadimi R, Mashayekh-Amiri S, Delavar MA, Basirat Z. The effect of myo-inositol supplementation on the prevention of gestational diabetes in overweight pregnant women: A randomized, double-blind, controlled trial. Minerva Obstet Gynecol. 2022. PMID: 35686634. https://doi.org/10.23736/S2724-606X.22.05036-9.

Authors are required to accomplish, sign and submit scanned copies of the JAFES Author Form consisting of: (1) Authorship Certification, that authors contributed substantially to the work, that the manuscript has been read and approved by all authors, and that the requirements for authorship have been met by each author; (2) the Author Declaration, that the article represents original material that is not being considered for publication or has not been published or accepted for publication elsewhere, that the article does not infringe or violate any copyrights or intellectual property rights, and that no references have been made to predatory/supected predatory journals; (3) the Author Contribution Disclosure, which lists the specific contributions of authors; (4) the Author Publishing Agreement which retains author copyright, grants publishing and distribution rights to JAFES, and allows JAFES to apply and enforce an Attribution-Non-Commercial Creative Commons user license; and (5) the Conversion to Visual Abstracts (*optional for original articles only) to improve dissemination to practitioners and lay readers Authors are also required to accomplish, sign, and submit the signed ICMJE form for Disclosure of Potential Conflicts of Interest. For original articles, authors are required to submit a scanned copy of the Ethics Review Approval of their research as well as registration in trial registries as appropriate. For Case Reports or Series, and Images in Endocrinology, consent forms, are required for the publication of information about patients; otherwise, appropriate ethical clearance has been obtained for the published in the JAFES represent the work of the author(s) and should not be construed to reflect the opinions of the Editors or the Publisher.

Unique, interesting, enlightening. Your case report and the JAFES.