The Roles of Non-Pharmacologic and Emerging Pharmacologic Management of Non-alcoholic Fatty Liver Disease and Sarcopenia

A Narrative Review

Authors

Keywords:

NAFLD, Sarcopenia, Fatty liver disease

Abstract

Non-alcoholic fatty liver disease (NAFLD) is one of the most prevalent causes of chronic liver disease worldwide which is often seen in patients with metabolic abnormalities such as those with obesity and insulin resistance. On the other
hand, sarcopenia is a generalized and progressive skeletal muscle disorder characterized by low muscle strength, low muscle quality, low physical performance, or a combination of the three. Both disease entities share several underlying risk factors and pathophysiologic mechanisms. These include: (1) cardiometabolic overlaps such as insulin resistance, chronic systemic inflammation, decreased vitamin D levels, sex hormone modifications; (2) muscle-related factors such as those mitigated by myostatin signaling, and myokines (i.e., irisin); and (3) liver-dysfunction related factors such as
those associated with growth hormone/insulin-like growth factor 1 Axis, hepatokines (i.e., selenoprotein P and leukocyte cell-derived chemotaxin-2), fibroblast growth factors 21 and 19 (FGF21 and FGF19), and hyperammonemia. This narrative review will examine the pathophysiologic overlaps that can explain the links between NAFLD and sarcopenia. Furthermore, this review will explore the emerging roles of nonpharmacologic (e.g., weight reduction, diet, alcohol, and smoking cessation, and physical activity) and pharmacologic management (e.g., roles of β-hydroxy-β-methylbutyrate, branched-chain amino acid supplements, and testosterone therapy) to improve care, intervention sustainability, and acceptability for patients with sarcopenia-associated NAFLD.

Downloads

Download data is not yet available.

Author Biography

Edgar Lerma, University of Illinois at Chicago College of Medicine, Chicago, Illinois, USA

Section of Nephrology

References

Younossi Z, Anstee QM, Marietti M, et al. Global burden of NAFLD and NASH: trends, predictions, risk factors and prevention. Nat Rev Gastroenterol Hepatol. 2018;15(1):11–20. https://pubmed.ncbi.nlm.nih.gov/28930295. https://doi.org/10.1038/nrgastro.2017.109.

Gadiparthi C, Spatz M, Greenberg S, et al. NAFLD epidemiology, emerging pharmacotherapy, liver transplantation implications and the trends in the United States. J Clin Transl Hepatol. 2020;28;8(2):215–21. https://pubmed.ncbi.nlm.nih.gov/32832402. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7438346. https://doi.org/10.14218/JCTH.2020.00014.

Chalasani N, Younossi Z, Lavine JE, et al. The diagnosis and management of nonalcoholic fatty liver disease: Practice guidance from the American Association for the study of liver diseases. Hepatology. Hepatology. 2018;67(1):328–57. https://pubmed.ncbi.nlm.nih.gov/28714183. https://doi.org/10.1002/hep.29367.

Bang KB, Cho YK. Comorbidities and metabolic derangement of NAFLD. J Lifestyle Med. 2015;5(1):7–13. https://pubmed.ncbi.nlm.nih.gov/26528424. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4608226. https://doi.org/10.15280/jlm.2015.5.1.7.

Cruz-Jentoft AJ, Bahat G, Bauer J, et al. Sarcopenia: revised European consensus on definition and diagnosis. Age Ageing. 20191;48(1):16–31. https://pubmed.ncbi.nlm.nih.gov/30312372. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6322506. https://doi.org/10.1093/ageing/afy169.

Dent E, Woo J, Scott D, Hoogendijk EO. Sarcopenia measurement in research and clinical practice. Eur J Int Med. 2021;90:1–9. https://pubmed.ncbi.nlm.nih.gov/34238636. https://doi.org/10.1016/j.ejim.2021.06.003.

Verstraeten LMG, de Haan NJ, Verbeet E, van Wijngaarden JP, Meskers CGM, Maier AB. Handgrip strength rather than chair stand test should be used to diagnose sarcopenia in geriatric rehabilitation inpatients: REStORing health of acutely unwell adults (RESORT). Age Ageing. 2022;51(11):afac242. https://pubmed.ncbi.nlm.nih.gov/36413590. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9681126. https://doi.org/10.1093/ageing/afac242.

Phu S, Kirk B, Bani Hassan E, et al. The diagnostic value of the short physical performance battery for sarcopenia. BMC Geriatr. 2020;20(1):242. https://pubmed.ncbi.nlm.nih.gov/32660438. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7359583. https://doi.org/10.1186/s12877-020-01642-4.

Martinez BP, Gomes IB, de Oliveira CS, et al. Accuracy of the Timed Up and Go test for predicting sarcopenia in elderly hospitalized patients. Clinics (Sao Paulo). 2015;70(5):369–72. https://pubmed.ncbi.nlm.nih.gov/26039955. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4449469. https://doi.org/10.6061/clinics/2015(05)11.

Ecarnot F, Rogoli D, Maggi S. Epidemiology of sarcopenia. Practical Issues in Geriatrics; 2021. https://doi.org/10.1007/978-3-030-80038-3_1.

Petermann-Rocha F, Balntzi V, Gray SR, et al. Global prevalence of sarcopenia and severe sarcopenia: A systematic review and meta-analysis. J Cachexia Sarcopenia Muscle. 2022;13(1):86–99. https://pubmed.ncbi.nlm.nih.gov/34816624. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8818604. https://doi.org/10.1002/jcsm.12783.

Fielding RA, Vellas B, Evans WJ, et al. Sarcopenia: An undiagnosed condition in older adults. Current consensus definition: prevalence, etiology, and consequences. International working group on sarcopenia. J Am Med Dir Assoc. 2011;12(4):249–56. https://pubmed.ncbi.nlm.nih.gov/21527165. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3377163. https://doi.org/10.1016/j.jamda.2011.01.003.

Chen LK, Woo J, Assantachai P, et al. Asian Working Group for sarcopenia: 2019 consensus update on Sarcopenia diagnosis and treatment. J Am Med Dir Assoc. 2020;21(3):300-7. https://pubmed.ncbi.nlm.nih.gov/32033882. https://doi.org/10.1016/j.jamda.2019.12.012.

Shafiee G, Keshtkar A, Soltani A, Ahadi Z, Larijani B, Heshmat R. Prevalence of sarcopenia in the world: a systematic review and meta-analysis of general population studies. J Diabetes Metab Disord. 2017;16:21. https://pubmed.ncbi.nlm.nih.gov/28523252. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5434551. https://doi.org/10.1186/s40200-017-0302-x.

Joo SK, Kim W. Interaction between sarcopenia and nonalcoholic fatty liver disease. Clin Mol Hepatol. 2023;29(Suppl):S68-78. https://pubmed.ncbi.nlm.nih.gov/36472051. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10029947. https://doi.org/10.3350/cmh.2022.0358.

Bhanji RA, Narayanan P, Allen AM, Malhi H, Watt KD. Sarcopenia in hiding: The risk and consequence of underestimating muscle dysfunction in nonalcoholic steatohepatitis. Hepatology. 2017;66(6):2055–65. https://pubmed.ncbi.nlm.nih.gov/28777879. https://doi.org/10.1002/hep.29420.

Juanola O, Martínez-López S, Francés R, Gómez-Hurtado I. Non-alcoholic fatty liver disease: Metabolic, genetic, epigenetic and environmental risk factors. Int J Environ Res Public Health. 2021;18(10):5227. https://pubmed.ncbi.nlm.nih.gov/34069012. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8155932. https://doi.org/10.3390/ijerph18105227.

Nishikawa H, Asai A, Fukunishi S, Nishiguchi S, Higuchi K. Metabolic syndrome and sarcopenia. Nutrients. 2021;13(10):3519. https://pubmed.ncbi.nlm.nih.gov/34684520. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8541622. https://doi.org/10.3390/nu13103519.

Hong J, Shin WK, Lee JW, Lee SY, Kim Y. Associations of serum vitamin D level with sarcopenia, non-alcoholic fatty liver disease (NAFLD), and sarcopenia in NAFLD among people aged 50 years and older: The Korea National Health and Nutrition Examination Survey IV–V. Metabolic Syndrome and Related Disorders. 2022;20(4):210–8. https://pubmed.ncbi.nlm.nih.gov/35100057. https://doi.org/10.1089/met.2021.0106.

Gan D, Wang L, Jia M, et al. Low muscle mass and low muscle strength associate with nonalcoholic fatty liver disease. Clin Nutr. 2020;39(4):1124–30. https://pubmed.ncbi.nlm.nih.gov/31053512. https://doi.org/10.1016/j.clnu.2019.04.023.

Cai C, Song X, Chen Y, Chen X, Yu C. Relationship between relative skeletal muscle mass and nonalcoholic fatty liver disease: A systematic review and meta-analysis. Hepatol Int. 2020;14(1):115–26. https://pubmed.ncbi.nlm.nih.gov/31290072. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6994447. https://doi.org/10.1007/s12072-019-09964-1.

Du K, Goates S, Arensberg M, Pereira S, Gaillard T. Prevalence of sarcopenia and sarcopenic obesity vary with race/ethnicity and advancing age. Divers Equal Health Care. 2018;15(4):175-83. https://www.primescholars.com/articles/prevalence-of-sarcopenia-and-sarcopenic-obesity-vary-with-raceethnicity-and-advancing-age-94980.html.

Bigman G, Ryan A. Implications of race and ethnicity in sarcopenia US national prevalence of sarcopenia by muscle mass, strength, and function indices. Gerontol Geriatr Res. 2021;4(1):126. https://pubmed.ncbi.nlm.nih.gov/35368515. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8970578.

Roh E, Hwang SY, Yoo HJ, et al. Impact of non-alcoholic fatty liver disease on the risk of sarcopenia: A nationwide multicenter prospective study. Hepatol Int. 2022;16(3):545–54. https://pubmed.ncbi.nlm.nih.gov/34780030. https://doi.org/10.1007/s12072-021-10258-8.

Wang YM, Zhu KF, Zhou WJ, et al. Sarcopenia is associated with the presence of nonalcoholic fatty liver disease in Zhejiang Province, China: A cross-sectional observational study. BMC Geriatr. 2021;21(1):55. https://pubmed.ncbi.nlm.nih.gov/33446095. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7807816. https://doi.org/10.1186/s12877-020-01910-3.

Wijarnpreecha K, Aby ES, Ahmed A, Kim D. Association between sarcopenic obesity and nonalcoholic fatty liver disease and fibrosis detected by fibroscan. J Gastrointestin Liver Dis. 2021;18;30(2):227–32. https://pubmed.ncbi.nlm.nih.gov/33951121. https://doi.org/10.15403/jgld-3323.

Chung GE, Kim MJ, Yim JY, Kim JS, Yoon JW. Sarcopenia Is Significantly Associated with Presence and Severity of Nonalcoholic Fatty Liver Disease. J Obes Metab Syndr. 2019;28(2):129–38. https://pubmed.ncbi.nlm.nih.gov/31294345. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6604841. https://doi.org/10.7570/jomes.2019.28.2.129.

Chakravarthy MV, Siddiqui MS, Forsgren MF, Sanyal AJ. Harnessing Muscle-Liver Crosstalk to Treat Nonalcoholic Steatohepatitis. Front Endocrinol (Lausanne). 2020;11:592373. https://pubmed.ncbi.nlm.nih.gov/33424768. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7786290. https://doi.org/10.3389/fendo.2020.592373.

Fernández-Mincone T, Contreras-Briceño F, Espinosa-Ramírez M, et al. Nonalcoholic fatty liver disease and sarcopenia: Pathophysiological connections and therapeutic implications. Expert Rev Gastroenterol Hepatol. 2020;14(12):1141–57. https://pubmed.ncbi.nlm.nih.gov/32811209. https://doi.org/10.1080/17474124.2020.1810563.

Kuchay MS, Martínez-Montoro JI, Kaur P, Fernández-García JC, Ramos-Molina B. Non-alcoholic fatty liver disease-related fibrosis and sarcopenia: An altered liver-muscle crosstalk leading to increased mortality risk. Ageing Res Rev. 2022;80:101696. https://pubmed.ncbi.nlm.nih.gov/35843589. https://doi.org/10.1016/j.arr.2022.101696.

Mikolasevic I, Pavic T, Filipec Kanizaj T, Bender DV, Domislovic V, Krznaric Z. Nonalcoholic fatty liver disease and sarcopenia: Where do we stand? Canadian Journal of Gastroenterology and Hepatology. 2020;2020:1–12.

Mody A, White D, Kanwal F, Garcia JM. Relevance of low testosterone to nonalcoholic fatty liver disease. Cardiovasc Endocrinol. 2015;4(3):83–9. https://pubmed.ncbi.nlm.nih.gov/26405614. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4577238. https://doi.org/10.1097/XCE.0000000000000057.

Hu J, Ke Y, Wu F, et al. Circulating irisin levels in patients with nonalcoholic fatty liver disease: A systematic review and meta-analysis. Gastroenterol Res Pract. 2020;2020:8818191. https://pubmed.ncbi.nlm.nih.gov/33224193. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7670588. https://doi.org/10.1155/2020/8818191.

Arhire LI, Mihalache L, Covasa M. Irisin: A hope in understanding and managing obesity and metabolic syndrome. Front Endocrinol (Lausanne). 2019;10:524. https://pubmed.ncbi.nlm.nih.gov/31428053. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6687775. https://doi.org/10.3389/fendo.2019.00524.

Dichtel LE, Subudhi S, Drescher H, et al. Expression of IGF-1, IGF-1 receptor and growth hormone receptor in hepatic tissue in adults across the spectrum of nonalcoholic fatty liver disease (NAFLD). J Endocr Soc. 2021;5(Suppl 1): A538-9. https://doi.org/10.1210/jendso/bvab048.1097.

Szczepańska E, Gietka-Czernel M. FGF21: A novel regulator of glucose and lipid metabolism and whole-body energy balance. Hormone and Metabolic Research. 2022;54(04):203–11. https://pubmed.ncbi.nlm.nih.gov/33381084. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7767990. https://doi.org/10.3389/fendo.2020.601290.

Tillman EJ, Rolph T. FGF21: An emerging therapeutic target for non-alcoholic steatohepatitis and related metabolic diseases. Front Endocrinol (Lausanne). 2020;11:601290.

Cai X, Yuan Y, Liao Z, et al. Α‐ketoglutarate prevents skeletal muscle protein degradation and muscle atrophy through PHD3/ADRB2 pathway. FASEB J. 2017;32(1):488–99. https://pubmed.ncbi.nlm.nih.gov/28939592. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6266637. https://doi.org/10.1096/fj.201700670R.

Woo J, Leung J, Morley JE. Validating the SARC-F: A suitable community screening tool for sarcopenia? J Am Med Dir Assoc. 2014;15(9):630–4. https://pubmed.ncbi.nlm.nih.gov/24947762. https://doi.org/10.1016/j.jamda.2014.04.021.

Ida S, Kaneko R, Murata K. SARC-F for screening of sarcopenia among older adults: A meta-analysis of screening test accuracy. J Am Med Dir Assoc. 2018;19(8):685–9. https://pubmed.ncbi.nlm.nih.gov/29778639. https://doi.org/10.1016/j.jamda.2018.04.001.

Rossi AP, Caliari C, Urbani S,et al. Sarcopenia risk evaluation in a sample of hospitalized elderly men and women: Combined use of the Mini Sarcopenia Risk Assessment (MSRA) and the SARC-F. Nutrients. 2021;13(2):635. https://pubmed.ncbi.nlm.nih.gov/33669277. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7920060. https://doi.org/10.3390/nu13020635.

Rossi AP, Micciolo R, Rubele S, Fantin F, Caliari C, Zoico E, et al. Assessing the risk of sarcopenia in the elderly: The Mini Sarcopenia Risk Assessment (MSRA) questionnaire. J Nutr Health Aging. 2017;21(6):743–9. https://pubmed.ncbi.nlm.nih.gov/28537342. https://doi.org/10.1007/s12603-017-0921-4.

Yang M, Hu X, Xie L, et al. Comparing mini sarcopenia risk assessment with SARC-F for screening sarcopenia in community-dwelling older adults. J Am Med Dir Assoc. 2019;20(1):53–7. https://pubmed.ncbi.nlm.nih.gov/29909052. https://doi.org/10.1016/j.jamda.2018.04.012.

Chun HS, Lee M, Lee HA, et al. Risk stratification for sarcopenic obesity in subjects with nonalcoholic fatty liver disease. Clin Gastroenterol Hepatol. 2023;21(9):2298-307.e18. https://pubmed.ncbi.nlm.nih.gov/36462755. https://doi.org/10.1016/j.cgh.2022.11.031.

Endo K, Sato T, Kakisaka K, Takikawa Y. Calf and arm circumference as simple markers for screening sarcopenia in patients with chronic liver disease. Hepatol Res. 2020;51(2):176–89. https://pubmed.ncbi.nlm.nih.gov/33141991. https://doi.org/10.1111/hepr.13589.

Hong J, Shin WK, Lee JW, Kim Y. Relationship between protein intake and sarcopenia in the elderly with nonalcoholic fatty liver disease based on the fourth and fifth Korea National Health and Nutrition Examination Survey. Metab Syndr Relat Disord. 2021;19(8):452–9. https://pubmed.ncbi.nlm.nih.gov/34255575. https://doi.org/10.1089/met.2021.0011.

Younossi ZM, Corey KE, Lim JK. AGA clinical practice update on lifestyle modification using diet and exercise to achieve weight loss in the management of nonalcoholic fatty liver disease: Expert review. Gastroenterology. 2021;160(3):912–8. https://pubmed.ncbi.nlm.nih.gov/33307021. https://doi.org/10.1053/j.gastro.2020.11.051.

Finer N. Weight loss interventions and nonalcoholic fatty liver disease: Optimizing liver outcomes. Diabetes Obes Metab. 2021;24(Suppl 2):44–54. https://pubmed.ncbi.nlm.nih.gov/34622555. https://doi.org/10.1111/dom.14569.

Vilar-Gomez E, Martinez-Perez Y, Calzadilla-Bertot L, et al. Weight loss through lifestyle modification significantly reduces features of nonalcoholic steatohepatitis. Gastroenterol. 2015;149(2):367-78.e5. https://pubmed.ncbi.nlm.nih.gov/25865049. https://doi.org/10.1053/j.gastro.2015.04.005.

Wong VW, Chan RS, Wong GL, et al. Community-based lifestyle modification programme for non-alcoholic fatty liver disease: A randomized controlled trial. J Hepatol. 2013;59(3):536-42. https://pubmed.ncbi.nlm.nih.gov/23623998. https://doi.org/10.1016/j.jhep.2013.04.013.

Koutoukidis DA, Koshiaris C, Henry JA, et al. The effect of the magnitude of weight loss on non-alcoholic fatty liver disease: A systematic review and meta-analysis. Metabolism. 2021;115:154455. https://pubmed.ncbi.nlm.nih.gov/33259835. https://doi.org/10.1016/j.metabol.2020.154455.

Himoto T, Miyatake K, Maeba T, Masaki T. Verification of the nutritional and dietary factors associated with skeletal muscle index in Japanese patients with nonalcoholic fatty liver disease. Can J Gastroenterol Hepatol. 2020;2020:3576974. https://pubmed.ncbi.nlm.nih.gov/32695733. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7368962. https://doi.org/10.1155/2020/3576974.

Kim Y. Emerging treatment options for sarcopenia in chronic liver disease. Life. 2021;11(3):250. https://pubmed.ncbi.nlm.nih.gov/33803020. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8002763. https://doi.org/10.3390/life11030250.

Bischoff SC, Bernal W, Dasarathy S, et al. ESPEN practical guideline: Clinical nutrition in liver disease. Clin Nutr. 2020;39(12):3533–62. https://pubmed.ncbi.nlm.nih.gov/33213977. https://doi.org/10.1016/j.clnu.2020.09.001.

Han E, Kim MK, Im S-S, Kim HS, Kwon TK, Jang BK. High sodium intake, as assessed by urinary sodium excretion, is associated with nonalcoholic fatty liver disease or sarcopenia. Gut Liver. 202315;17(3):456-65. https://pubmed.ncbi.nlm.nih.gov/36317511. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10191796. https://doi.org/10.5009/gnl220133.

Åberg F, Puukka P, Salomaa V, et al. Risks of light and moderate alcohol use in fatty liver disease: Follow-up of population cohorts. Hepatology. 2020;71(3):835-48. https://pubmed.ncbi.nlm.nih.gov/31323122. https://doi.org/10.1002/hep.30864.

Van Dongen C, Paik JM, Harring M, et al. Sarcopenia, healthy living, and mortality in patients with chronic liver diseases. Hepatol Commun. 2022;6(11):3140-53. https://pubmed.ncbi.nlm.nih.gov/35950286. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9592796. https://doi.org/10.1002/hep4.2061.

Hashida R, Kawaguchi T, Bekki M, et al. Aerobic vs. resistance exercise in non-alcoholic fatty liver disease: A systematic review. J Hepatol. 2017;66(1):142–52. https://pubmed.ncbi.nlm.nih.gov/27639843. https://doi.org/10.1016/j.jhep.2016.08.023.

Gonzalez A, Valero-Breton M, Huerta-Salgado C, Achiardi O, Simon F, Cabello-Verrugio C. Impact of exercise training on the sarcopenia criteria in non-alcoholic fatty liver disease: A systematic review and meta-analysis. Eur J Transl Myol. 2021;31(1):9630. https://pubmed.ncbi.nlm.nih.gov/33709647. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8056167. https://doi.org/10.4081/ejtm.2021.9630.

Nakatsuka T, Tateishi R, Koike K. Changing clinical management of NAFLD in Asia. Liver Int. 2021;42(9):1955–68. https://pubmed.ncbi.nlm.nih.gov/34459096. https://doi.org/10.1111/liv.15046.

Arrese M, Cabello-Verrugio C, Arab JP, Barrera F, Baudrand R, Guarda FJ, et al. Sarcopenia in the setting of nonalcoholic fatty liver. Metab Target Org Damage. 2022; 2:2. https://doi.org/10.20517/mtod.2021.16.

Wackerhage H, Schoenfeld BJ, Hamilton DL, Lehti M, Hulmi JJ. Stimuli and sensors that initiate skeletal muscle hypertrophy following resistance exercise. J Appl Physiol (1985). 2019;126(1):30–43. https://pubmed.ncbi.nlm.nih.gov/30335577. https://doi.org/10.1152/japplphysiol.00685.2018.

Katsagoni CN, Papatheodoridis GV, Ioannidou P, Deutsch M, Alexopoulou A, Papadopoulos N, et al. Improvements in clinical characteristics of patients with non-alcoholic fatty liver disease, after an intervention based on the Mediterranean lifestyle: A randomised controlled clinical trial. Br J Nutr. 2018;120(2):164–75. https://pubmed.ncbi.nlm.nih.gov/35565740. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9101735. https://doi.org/10.3390/nu14091773.

Calabrese FM, Disciglio V, Franco I, Sorino P, Bonfiglio C, Bianco A, et al. A low glycemic index Mediterranean diet combined with aerobic physical activity rearranges the gut microbiota signature in NAFLD patients. Nutrients. 2022;14(9):1773.

Lattanzi B, Bruni A, Di Cola S, et al. The effects of 12-week beta-hydroxy-beta-methylbutyrate supplementation in patients with liver cirrhosis: Results from a randomized controlled single-blind pilot study. Nutrients. 2021;13(7):2296. https://pubmed.ncbi.nlm.nih.gov/34371806. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8308449. https://doi.org/10.3390/nu13072296.

Espina S, Sanz-Paris A, Gonzalez-Irazabal Y, et al. Randomized clinical trial: Effects of β-hydroxy-β-methylbutyrate (HMB)-enriched vs. HMB-free oral nutritional supplementation in malnourished cirrhotic patients. Nutrients. 2022;14(11):2344. https://pubmed.ncbi.nlm.nih.gov/35684144. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9183090. https://doi.org/10.3390/nu14112344.

Uojima H, Sakurai S, Hidaka H, Kinbara T, Sung JH, Ichita C, et al. Effect of branched-chain amino acid supplements on muscle strength and muscle mass in patients with liver cirrhosis. Eur J Gastroenterol Hepatol. 2017;29(12):1402–7. https://pubmed.ncbi.nlm.nih.gov/28984678. https://doi.org/10.1097/MEG.0000000000000968.

Sinclair M, Grossmann M, Hoermann R, Angus PW, Gow PJ. Testosterone therapy increases muscle mass in men with cirrhosis and low testosterone: A randomised controlled trial. J Hepatol. 2016;65(5):906–13. https://pubmed.ncbi.nlm.nih.gov/ 27312945. https://doi.org/10.1016/j.jhep.2016.06.007.

Haigh L, Kirk C, El Gendy K, et al. The effectiveness and acceptability of Mediterranean diet and calorie restriction in non-alcoholic fatty liver disease (NAFLD): A systematic review and meta-analysis. Clin Nutr. 2022;41(9):1913–31. https://pubmed.ncbi.nlm.nih.gov/35947894. https://doi.org/10.1016/j.clnu.2022.06.037.

Mendonça N, Gregório MJ, Salvador C, Henriques AR, Canhão H, Rodrigues AM. Low adherence to the Mediterranean diet is associated with poor socioeconomic status and younger age: A cross-sectional analysis of the EPIDOC cohort. Nutrients. 2022;14(6):1239. https://pubmed.ncbi.nlm.nih.gov/35334895. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8954252. https://doi.org/10.3390/nu14061239.

Tong TY, Imamura F, Monsivais P, et al. Dietary cost associated with adherence to the Mediterranean diet, and its variation by socio-economic factors in the UK Fenland study. Br J Nutr. 2018;119(6):685–94. https://pubmed.ncbi.nlm.nih.gov/29553031. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5999016. https://doi.org/10.1017/S0007114517003993.

Downloads

Published

2023-10-27

How to Cite

Rivera, F., Adizas, A. V., Cubarrubias, D., Bantayan, N. R. B. ., Choi, S., Carado, G. P., Lerma, E., Vijayaraghavan, K., & Yu, M. G. (2023). The Roles of Non-Pharmacologic and Emerging Pharmacologic Management of Non-alcoholic Fatty Liver Disease and Sarcopenia: A Narrative Review. Journal of the ASEAN Federation of Endocrine Societies. Retrieved from https://www.asean-endocrinejournal.org/index.php/JAFES/article/view/2679

Issue

Section

Review Articles

Most read articles by the same author(s)